lol, who closed the thread?
To answer your questions-
Phase- You can select the wav and go to Modify - Invert and it will invert the phase. I think the first menu is Modify but I'm positive the command is Invert (wherever it may actually be).
Sweeping Filters- Huh? I think you are using them correctly for bass cuts and such. If there is a better use than I'd like to know too.
Jitter- I could be a show off and give you my explanation but I'll tell you where I learned about it.
www.digido.com Go to their articles section and Bob Katz has written a bunch of great shit on digital recording. Dobro's explanation was pretty good.
Here are some quotes about Jitter-
Jitter is time-base error. It is caused by varying time delays in the circuit paths from component to component in the signal path. The two most common causes of jitter are poorly-designed Phase Locked Loops (PLL's) and waveform distortion due to mismatched impedances and/or reflections in the signal path.
A properly dithered 16-bit recording can have over 120 dB of dynamic range; a D to A converter with a jittery clock can deteriorate the audible dynamic range to 100 dB or less, depending on the severity of the jitter. I have performed listening experiments on purist, audiophile-quality musical source material recorded with a 20-bit accurate A/D converter (dithered to 16 bits within the A/D). The sonic results of passing this signal through processors that truncate the signal at -110, -105, or -96 dB are: increased "grain" in the image, instruments losing their sharp edges and focus; reduced soundstage width; apparent loss of level causing the listener to want to turn up the monitor level, even though high level signals are reproduced at unity gain. Contrary to intuition, you can hear these effects without having to turn up the listening volume beyond normal (illustrating that low-level ambience cues are very important to the quality of reproduction). Similar degradation has been observed when jitter is present. Nevertheless, the loss due to jitter is subtle, and primarily audible with the highest-grade audiophile D/A converters.
Most computer-based digital audio cards have quite high jitter, which makes listening through them a variable experience. It is very difficult to design a computer-based card with a clean clock---due to ground and power contamination and the proximity of other clocks on the computer's motherboard. The listener may leap to a conclusion that a certain DSP-based processor reduces soundstage width and depth, low level resolution, and other symptoms, when in reality the problem is related to a jittery phase-locked loop in the processor input, not to the DSP process itself. Therefore, always make delicate sonic judgments of DSP processors under low jitter conditions, which means placing high-quality jitter reduction units throughout the signal chain, particularly in front of (and within) the D/A converter. Sonic Solutions's new USP system has very low jitter because its clocks are created in isolated and well-designed external I/O boxes.